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Parametric light bullets supported by quasi-phase-matched quadratically nonlinear crystals
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We present a comprehensive analysis of the dynamics of three-dimensional spatiotemporal nonspinning and
spinning solitons in quasi-phased-matcH&PM) gratings. By employing an averaging approach based on
perturbation theory, we show that the soliton’s stability is strongly affected by the QPM-induced third-order
nonlinearity(which is always of a mixed type, with opposite signs in front of the corresponding self-phase and
cross-phase modulation termgVe study the dependence of the stability of the spatiotemporal s¢8{68 on
its energy, spin, the wave-vector mismatch between the fundamental and second harmonics, and the relative
strength of the intrinsic quadratic and QPM-induced cubic nonlinearities. In particular, all the spinning solitons
are unstable against fragmentation, while zero-spin STS’s have their stability regions on the system’s parameter
space.
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[. INTRODUCTION media are strongly unstable, being subject to catastrophic
wave collapsdg7]. These theoretical challenges, as well as
Solitons are localized excitations that are not distortedhe fact that STS’s could be used for potential applications in
upon propagation in a nonlinear medium. They can be founditrafast all-optical logic devicef8], provided that they are
in many fields, such as optics, fluids, plasmas, condensedrmed at moderately low optical powers, have been a strong
matter, and field-theory physics. Ever since their discoveryincentive for both theoretical considerations and experimen-
both fundamental physical properties and potential technogg| efforts.
logical applications of the solitons have been attracting a Several approaches to stabilize the STS have been pro-
steadily grOWing interest. In OptiC8.| media, solitons form ei- posed_ For examp|e' one can emp|oy media with a different
ther through a balance between dispersive and self-phasfonlinear optical response: namely, saturable nonlinearity
modulation(SPM) effects, as is the case of temporal solitons,[9-11], self-induced transparen¢$?], cubic-quintic nonlin-
or, in the spatial domain, as a result of the balance of diffracearity [13-15, or off-resonance two-level systerfs5]. Al-
tion and nonlinear self-focusingdor a historical perspective ternatively, graded-index Kerr media can be ufd.
on optical solitons see Reff1]). A different approach to generate stable STS’s is to employ
A paradigmatic example is provided by the optical soli-more than one propagating field, so that a 3D soliton would
tons in silica fiberg2,3], in which case the transverse local- pe formed through mutual dynamic trapping of the waves
ization of the pulse is imposed by the fiber itself, whereas theyith different frequencies. The first example is the prediction
longitudinal and temporal localizations are achieved by thexf stable light bullets in quadratically nonlinear media
perfect balance between the anomalous group-velocity dig18—27, which is possible because the quadr&ji) non-
persion(GVD) and SPM due to the Kerr effect in silica. jinearity does not lead to wave collapse in any physical di-
Extending these ideas to the propagation in Jukk, three-  mension[4,23,24. Also, stablé’bullets can be predicted in a
dimensional3D) medig nonlinear dispersive media, one ar- more general case of an optical medium with compegifiy
rives at the concept of an optical spatiotemporal solitonand self-defocusingy® nonlinearities, which is sometimes
(STS [4,5] (alias “light bullets"[6]). However, a fundamen- refered to as the?: y® model[25]. In fact, optical STS's
tal problem is that formal 3D solitons in uniform Kefx'®)  have been thus far observed experimentally solely in such a
medium[26]. These experiments employed highly elliptical
beams, such that diffraction effects were negligible in one
*Also with the Department of Theoretical Physics, Institute of transverse dimension; consequently, the observed STS's
Atomic Physics, Horia Hulubei National Institute of Physics andwere (2+1)D light bullets (effectively, with two spatial and
Nuclear Engineering, P.O. Box MG-6, Bucharest, Romania. one temporal dimensiohs
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FIG. 1. Schematic of the SHG, in the QPM grating, under type-I conditions: two optical pulsed signals, with the electrie“fiatas
E2, polarized along the extraordinary axis, interact as they propagate in a grating with periodic variation of the quadratic susg&ptibility
The arrows indicate the orientation of ferroelectric domains.

Vortex (spinning solitons constitute a distinct class of tions, while the second-harmoniSH) wave has a single
STS’s, in which the optical field carries angular momentumpolarization, have been reported for the D] and 2D[41]
[15,25,27-31. The vortex solitons have become the focus ofcases. These studies have shoimter alia, that QPM in-
rapidly growing interest, both because they offer ideal testluces an artificial cubic nonlinearity that may be self-
objects to study fundamental properties of complex nonlineadefocusing, competing with thg? one, which is the neces-
excitations and due to promising possibilities for applica-sary ingredient for generating stable spinning STS's.
tions, such as trapping and channeling of matter waves, cagurthermore, the induced® nonlinearity can be further en-
turing and transport of microparticles, reconfigurable con-hanced 37,42 by modulating the QPM grating; a switching
duits for transmission of optical signals, and others.scheme based on this effect has been proposed in43if.
However, the stability is a more difficult issue for the spin-  In this paper, we present a theoretical investigation of the
ning STS’s, as compared to their zero-spin counterpartfprmation of spinning STS's, and their stability, in a bulk
chiefly because they are prone to strong instability againsSDPM grating. The paper is organized as follows. In the next
azimuthal perturbations. The first stable spinning STS’s irsection, we introduce the mathematical model that describes
(3+1)D dimensions have been predicted in the cubic-quintidhe interaction of copropagating waves in the type-l system.
[15] andX(Z);X(_3> [25] models. In both cases, stabilization is Then, in Sec. Ill we introduce the spinning STS’s that can
provided by the presence abmpeting(self-focusing and Ppropagate in such a grating. A general discussion of the sta-
self-defocusing nonlinearities. bility of the STS’s is presented in Sec. IV, and a rigorous

Recently, it has been demonstrated both theoreti¢aly ~ linear perturbation analysis of the stability is the subject of
and experimentally33] that cascading of two-wave para- Sec. V. In the last section we summarize our results.
metric frequency conversion ix® media may give rise an
effective y'® self-focusing orself-defocusingnonlinearity. Il. MATHEMATICAL MODEL

Furth , b ing th i-phase-matchi@PM . . .
urthermore, by using the quasi-phase-matchi@>M h We consider the propagation of an optical pulse at fre-

technique—i.e., compensation of the wave-vector mismatc d its SH ¢ . lossl bulk
through an additional wave vector induced by periodic reverguF?'\';'lcy“’ and its d  at relquencya§ r']n a lossless bulk
sal of the orientation of ferroelectric domains in the opticalQ grating, under type-l second-harmonic generation

crystal— the highesy? coefficient may be used, making (SHG) conditions. The QPM grating is a periodic structure,

the two-wave parametric interaction most efficient. Thel" Which both the linear part of the susceptibility—i.e., the

. . . . 1 M S . . .ge ) _
QPM technique offers several other advantages: it eliminate€ractive index—and the quadratic susceptibijty are pe

spatial walk-off effects, nonbirefringent materials may berlodic functions of the longitudinal distance, as is illustrated

used, and the phase matching is achievable at room tem et’Q-Fig' 1
ture. P g P In this geometry, both the FF wave and the SH are polar-

For these reasons, QPM gratings may potentially be idezilzed a_Iong the same direction, which is also a principal crys-
media for both experimental and theoretical investigation of2! .zx's’ therefore, no vlvalk—off effects"are fprestra]nt. To de-
the multidimensional solitons. In particular, QPM-supportedSc'P€ & more general case, we allow for the average

spatial solitons have been observed at intensities almost a(Hormahzed _quadratlc suscep§|b|llty coefflc:le_n% to b?
order of magnitude lower than those required to generat onzero, ?‘S't”a“on that dgscrlbes QPM gratings fabricated
them in bulk crystals[34]. Theoretical results for 1D rom semiconductor materials. Further, we assume that the

[32,35-3§, and 2D[39] QPM spatial solitons, in type-I sys- relative mde_\x contrast Qf the grating is small. .
tems, which employ two interacting wavésndamental and 1 N€ two interacting fields copropagate along theirec-
second harmonigspolarized along the same direction, have i0n @nd can be represented as

_also k_)een reported. R_ecently, extensions to type-ll systems, E“i(r,t) = %éSi(X,y,Z,t)eXp[i(wit— k2]+cc., (1)
in which the parametric frequency conversion involves three

waves, as the fundamental-frequend@yF) harmonic is a whereé is a unit vector along the polarization direction,
combination of two components with orthogonal polariza-andy are the transverse coordinatesjs the longitudinal
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distance,t is time, andw,=nw(n=1,2), & and k;=k(w;)
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grating must have similar dispersion properties; therefore,

being the electric fields and wave vectors at the two harmonthe relative-GVD parameter is assumed constant along the
ics, respectively. Then, within the slowly varying envelopegrating.
approximation, the two copropagating fields obey the known The latter condition is rigorously satisfied by gratings ob-

equationg 44],

aE &, ’€1 20°n
2|kl<0"_1+k! 1 wl 1

J
) + Vf_é‘l - klk&’? + 7An1(2)51

2w° .
+ % X2 &8 = 0, (2a)

AT 3
2|k2 Z + k2 O')t + VLé‘Z - k2k2? 2( )

2
+ 2@ =0, (2b)

where Vi is the transverse Laplacialhk=2k;—-k, is the
wave-vector mismatchk! =(dk/dw)| =, —1/vgn is the in-
verse of the group velocity; = (azk/(?w ) = o, is the GVD

tained through the periodically poling of such ferroelectric
materials as LiNb@ or KTIOPQ, (KTP). Finally, it is as-
sumed that the group velocities at the two harmonics are the
same,vg; =vgp=v(%=1,), which means that there is no
temporal walk-off between the two pulses. As a result, the
first-order time derivatives in the syste(® can be elimi-
nated by a simple transformatian- 7—{/v.

The dynamics of the pulses is determined by the interplay
of three characteristic lengths: the diffraction lengghthe

grating, A. In the normalized unitszy=1 andL.=#/|8. In
typical experiments, the diffraction length &~1 mm,
whereas the domain length As~ 10 um. Therefore, the ap-
proximation A<1 holds, or, in other words, the grating’s
wave vectoQ| =/ A is large,|Q}| > 1. Furthermore, since
the domain length is much larger than the wavelengths em-
ployed and the relative refractive index contrast between ad-

coefficient, andy®(2) is the z-dependent quadratic coeff- jacent slabs in the grating is small, Bragg reflections may be
cient; Ny, Ny, andAny(2), Any(2) are, respectively, the aver- neglected. Under these conditions, the dynamics of the beam
age and the variable pafnodulatior) of the two refractive interaction can be described by a set of averaged equations
indices at the FF and SH. In order to normalize these equd32]. To derive them, we follow the method introduced in
tions, we defineg=z/z,, £é=x/wy, n=y/Wy, 7=t/tg, P=A1&4, Ref. [32] (see also Refd.39,4] for the case of 2D spatial
and W =A,E,. Here,zy=k,Wj is the diffraction length at the solitony, Fourier-decomposing the grating parameters
FF, wo is the characteristic transverse spatial width of theaq 4(£) andT'(¢),

pulse,ty=17,|K]| is the characteristic pulse duration, aAd _

=\gCNi/ 2S, are normalization constants for the field ampli- ap () =g w2 g™, 4

tudes, withc being the speed of lighg, the vacuum permit- n

tivity, and §5=1GW/cn¥ a normalization intensity. Upon the

normalization, Eqs(2) become T() = yo+ 7, 9., (5)
n

oD P\ 1 _, o PP
(ag 01&) 2{VL<I> sgr{kl)ﬁTZ]+a¢(§)<I>

+ (D" WeFl=0, (3a)
(&\If
24

+T()P%F =0, (3b)

v\ 1 )
az‘; ) + Z[Vi\y - sgr(k’z')cr(?—Tz] + 2ag (W

where 9;=zy/vgty, B=2,AK is the normalized wave-vector
mismatch ag () = wAn; x({)Z,/ ¢ are the normalized modu-
lations of the refractive indicelfor a grating with uniform

linear properties, agpw()=0 and y,=0], TI'(0

=(wxPzyl c)\2Sy/ excNsN, is the normalized parametric cou-

pling strength, andr=2|kj3|/|Kk]|. In deriving the systen3),

we assumed that@=k;, which is a good approximation for

and the fieldsb(&,7,{, 7 andW (¢, 79,4, 7),

O£ 74,7 = 2 D& 7L NEMY, (6a)

V(& nLm) = 2 W& n,L, e MPE (6b)

where y, and vy are, respectively, the average value and
modulation amplitude of the parametric-coupling strength,
agy are the amplitudes of the modulation of the refractive
index, ®,(&,7,{,7) and ¥(¢,7,{,7) are slowly varying
functions of their arguments, as comparedet?, and g
=B-Q is the effective wave-vector mismatch parameter. We
assume that the phase mismatch introduced by the grating
can be accurately controlled; hencg,is very small (al-

usual experimental conditions. Furthermore, we assume th#itiough bothg and|Q| are large. For the grating in Fig. 1,
the GVD at FF is anomalous in both media that form thethe Fourier coefficientg,=2sgri€)/izn for odd n and g,
QPM structure—i.e., sdkj)=-1—in which case STS's ex- =0 otherwise. Here, the stf}) factor ensures that both posi-
ist, in the rigorous sense, only if the dispersion at SH is alsdive and negative values 6f correspond to the same grating.
anomalous or vanishd49] (however, in some cases, STS's Consequently, since sgB)=sgn({2), we can treat both cases
may “almost exist” even when the GVD is slightly normal at =0 simultaneously. Furthermore, we assume that the
SH, which means that the soliton exists with a tiny, virtually higher-order harmonics in the expansioi® are of order

invisible tail attached to if45]). Therefore, we set sgk)

O(1/|Q2]) or smaller, whereas the zero-order ones are of or-

=-1 ando=0. Thus, the two optical media that form the der O(1). Then, following the procedure introduced in Ref.
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[32], we derive relationships between the higher-order Foufirst equation is self-focusing, but the cross-phase modula-
rier coefficients and the zero-order on@sghich are called tion (XPM) terms in both equations are self-defocusing and
average fieldsn this papey, &, and V¥ the second equation includes no SPM term.

1 *
Dpso= E[a¢gn¢0+ (YoOh-1+ YO PoVol,  (78) IIl. SPINNING SOLITONS IN THE QPM MEDIUM

To investigate the formation of spinning STS'’s in the bulk
1 ) QPM grating, we proceed as follows. First, we find the
‘I’n;to:E[zt’ﬂ«pgn‘l’o"’(?’otsn,l‘F Y-0Pgl. (7B spinning-soliton solutions of the average systéh) and
subsequently use them to construct the spinning solitons that
Further, by inserting these expressions in the sys®m propagate in the actual QPM grating. For the latter step, we
and neglecting higher-order terms in the corresponding sysised the following relationships between the average fields
tem that describes the evolution of the zero-order fields, wéu,v} and the actual onefb, ¥}, which are valid to first
obtain the following system of equations that governs theorder ine=1/|():
dynamics of the zero-ordéaverage fields in the expansion

. uZ=0 1 |im

© P(=0==1 M{ o (— + 7059'"(9))

by 1 _, P o 2 P

'a_g 5 Vido+ 02 + p®oWo+ A(| Dol = [Wol) Dy y v*(g:o)] u=0 (i) 128

=0 (8a) p Il |Q|2
A PV, wie=0=t¥=0 _ 1| v(=0
'a_g <V2 W+ 07) B+ p W2 = 2A|Dg2Wy = 0 (=0 iy e
2i u?(£=0) 1
> +(2 wooren) 52 | o ).
where the effective quadratic and induced cubic nonlineari- p
ties are represented by the parameters (12b)
2isgr(Q) To derive these transformations one should insert the fields
:T[Z'}’O(O‘@_QW)/Q_ 1, (9)  given by Egs.(7) in the expansion6) and collect all the

terms up to the orde®(1/|Q}?).
To determine stationary spinning STS solutions of the
system(11) we look for solutions that can be written as

u(é n,¢, 1) =U(r, neeerse, (138

A =[5+ (1 -8l72)]IQ. (10)

Finally, by introducing the rescaled fields=|p|®, and v
=pW¥,, the systen({8) becomes

ot <V2 &Zfl;)*u*v+5<|u|2—|v|2>u=o, v(€7.,7) = V(r, e, (13b)
J

&g 2 where U and V are assumed to be real functions,

(119 =\V&+ 77 and 6 are the polar coordinates in the transverse
plane, k is the soliton’s propagation constant, asds its
vorticity (“spin”). Note that, althougtu(r,7) andV(r,7) de-
scribe stationary STS's, they satisfy a system of partial dif-

(11b) ferential equations

where §=A/|p|? is the relative strength of the induced cubic <a2u 4= 15U 52@ P
nonlinearity and the intrinsic quadratic one. For typical QPM 2\ a2 rar r?ar?2 97
gratings, the latter parameter takes val{@#js<0.05, but as +8(U2-VA)U =0 (149
we will show later, even such small values can have a dra- '
matic influence on the formation of STS’s. (

(92
i—+ —(Viv + O'ﬁ) ,81) +Uu?-28uj? =

)—KU+UV

We stress that, unlike the full propagation systé@n the = &ZV 1V _ 452‘92\/ ‘72\/
system(11) has constant coefficients, which greatly simpli- 4\ gr? r ar 22" 792
fies the analysis of existence and stability of its spinning STS — 25UV =0 (14b)
solutions. It is also worthy to note that the form of the effec- '
tive x® nonlinearity in Eqs(11) is drastically different from Equations(14) have been solved numerically by using a
that in the model which assumes a material Kerr nonlinearitystandard band-matrix algorithfd6], for different values of
rather the artificial ong25]. In particular, the cubic nonlinear the effective wave-vector mismatgh soliton’s propagation
terms in Eqgs.(11) are neither definitely self-focusing nor constantx, and relative-GVD parameter. Furthermore, to
definitely self-defocusing, but are rather of a mixed kind.verify whether these spinning solitons preserve their shape
Indeed, if, for instance¢ is positive, the SPM term in the upon propagation in the actual QPM grating, we used the

) (B+ 2K)V + U2
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FIG. 3. The energy of the Folid lineg and SH(dashed lines
components vs the longitudinal distangéor §=0.05 (left panels
and 6=-0.05 (right panelg. The soliton parameters a®=0, «
=0.1, andB=0 and the relative-GVD parameter=0 (upper pan-
els), =1 (middle panels ando=2 (lower panelg

negative values of the relativg® strength parameters

_ _ . . =0.05 ands=-0.05, respectively. In all three cases presented
FIG. 2. (Color onling Field amplitude and phase profiles of the j, Fig. 3, the solitons are characterized by parameter values

FF (left panels and SH(right panel$ waves, calculated in the cross s=0. xk=0.1 andEZO. The energy of the FF and SH com-

s_ectlonrzo, and correspondlng to a zero-spin STS with the d'Sper'ponents, and the total energy are defined as follows:
sion parameterr=1, soliton wave vectok=0.5, and zero wave-

vector mismatch[_?:O. The field amplitude profiles are calculated

at =0 [(a) and (b)] and {=20.164(30 grating periods[(c) and - . 2

(d)], whereas the phase profil¢&) and (f)] are calculated at Eo |P(£:& 77| *dédmdr, (153
=20.164.

transformation(12) to restore the grating fieldsb, ¥} on the
basis of the average ones, found by numerically solving Egs. Ey :J f j |W(Z; & m,7]2dedydr, (15b)
(14), and subsequently used these grating fields as initial
conditions for the full propagation syste(8). The latter sys-
tem has been integrated by using a standard Crank-Nicolson _
method, with transparent boundary conditi¢dg] . For the Eiot=Eo + Ey. (150)
parameters of the grating, we toal,=ay=0, %=0, y=1, Among other things, Fig. 3 shows that, after a short tran-
and (1=9.35—i.e., a grating for which only the nonlinear sjent distance over which the input pulse gets reshaped, it
susceptibility varies with the longitudinal distanée The  gttains a propagation regime in which, on average, the ener-
corresponding value of the induced® coefficient is[5|  gies of its FF and SH components remain constant. Notice,
=0.05. ) ) ) however, that in this regime of quasistationary propagation,

~One example that illustrates this procedure is presented ifhe soliton’s amplitudes exhibit strong oscillations, a phe-
Fig. 2, which shows the FF and SH fields, in the cross sechomenon that is a direct manifestation of the spatially peri-
tion of 7=0, both at the input facet of the QPM gratifg  ogic grating. Indeed, the period of oscillations in Fig. 3 ex-
=0) and after the propagation distange20.164(30 grating  actly matches the periodicity of the grating.
periods. In this case, the fields correspond to a zero-spin  The origin of the fast oscillations seen in Fig. 3 can be
STS(s=0) with the relative-GVD parameter=1, propaga- clarified if one resorts to the perturbative approach. Follow-
tion constantk=0.5, and zero phase mismatgh=0. Also  ing the lines of the analysis developed in RdB2,39,41,
shown in Fig. 2 are the phases of the two pulses at the outpuine can derive relationships between the energies carried by
facet of the grating. This figure demonstrates that the solitofthe fields{®, ¥} and the rescaled average onsp}, valid
remainsstableupon propagation, although its amplitude pro- to the orderO(1/|Q)?):
file is slightly reshaped and the phases at both the FF and SH
are weakly modulated. £ 2iK

To gain a deeper insight into the process of the STS for- Ep= —“2 + —Z{yosin(ﬂg)

mation in the actual QPM grating, we show in Fig. 3 the o> Qlpl*p
dependence of the total energy of the FF and SH components 4sgr(Q) cos(2nQ?) 1
of the pulse versus the propagation distance. The soliton - En>12—_] 0(@)
propagation is illustrated for three values of the dispersion & an"-1 i
parametew, 0=0, 0=1, ando=2, and for both positive and (163
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; 4 —
\lf:E_Uz_ IKz {705"1(95) N S -
o> Qlpl*p 2 e % % x
4sgnQ}) cos(2nf) X 2 "‘)'(':-f ~— 2
4 1 L[ -
gTEﬁ] 0(@) 3 T
(16b A 3 o=t
whereK({)=[[[u?vdédndr and the energiek,,, are given 215 U S X Tx XX
by expressions similar to Egél5). Note that these relations & B
hold only for real solutiongu,v}. When the average fields X ! +N+_'"*“+-~+-¢_, +
{u,v} are stationary STS solutions of the systé), K is a 03 T
constant. Similar relations have been derived in R, for A [o=2
the particular case of 1D gratings witjp=0. These equa- 8 01 S
tions show that fast modulations with spatial frequen€y 2 - _*__*__x——x—-f"x' x X
are superimposed on top of constant values of the energies, TIPS
E../|pl?>. The origin of the modulations is the presence of v I S
higher-order terms in the Fourier expansi@j Note that, if 08 %2 o2 s o8 1
v # 0, the spatial frequency of the modulation of the ener- wave vector K

gies is equal td). Also, notice that, up to a scaling transfor-

mation, the energies are conserved at the zeroth and first FIG. 4. Ratio between the peak intensities of the SH and FF
’ 9 components{|W|?)/(|®|?), of the soliton solutions of Eqg14),

orders Eg+Ey=(E+E,)/lp. . calculated for 5=-0.05(dashed lines 5=0 (solid lineg, and &
The induced thlrd-order nonljnearlty plays an _'mportant:0.05(dot-dashed lings vs soliton’s propagation constart The
role in the dynamics of the STS’s in the QPM. This conclu-game ratio, which corresponds to the grating with-0.05 (x) and
sion is supported by the results obtained in the followings=0.05(+), is shown as found by numerical integration of the full
numer'cal eXperIment_We fOUﬂd the SO|It0nS Of the Syster%ystem 3 and averaging over ten diffraction |enm$Be text for
(14) that correspond t@=0, spins=0 and§=0,+0.05 for  detaily. The parameters arg=0 (zero spin and 8=0 (no wave-
several values of the soliton propagation constanand  vector mismatch
relative-GVD parametes. Then, these solutions were used

as .|n|t|al conquns for the tull d_ynam|ca! equatiors), vestigate whether these stability characteristics are preserved
which were then integrated numerically until the average eNyhen the spinning STS's propagate in the actual grating de-
ergy of the pulses would have reached a constant value. We ribed by the full dynamical systef8). Note that the sta-
then determined the ratio of the average peak intensities "l’JtiIity properties of the spinning STSs can also be investi-
the two harmonics and compared the results with those th%tated by employing a Floguet analysis of the plane-wave
correspond to the soliton solutions of the syste). The S tions of the full dynamical syste8) [36,38.

results are presented in Fig. 4. As this figure illustrates, there To this end. we define conserved quaniit{'&ﬂegrals of

is a large discrepancy between the predictions of the SySterotion) that ar’e preserved by the dynamical equatitiis:

(14), in which the third-order nonlinearity is taken into ac- the total ener HamiltonianH. and anaular momentum
count(6+ 0), and those with¥=0. As one can see, for small | . OE. ’ g

values of the soliton’s propagation constagtthe former

agree well with the numerical simulations of the full system _ ) ) 3

(3). Note that the same behavior has been observed in the 16= [u(¢ 7.8 D"+ |o(€ 7.¢ D ]dédndr=E,+ E,,
model[32]. On the other hand, Fig. 4 also shows thatkxas

increases, the predictions based on the average model be- (17)
come less accurate. The source of this discrepancy can be

easily understood by noting that one of the conditions, under |, 1 B
which the average model was derived, is that the average H 92 Vo U+
fields must vary slowly, as comparedd®?. This amounts to

the requirement that must be much smaller than the grat- 12 22 2_ 2111412

ing’s wave vector(). Importantly, Fig. 4 also shows that + (B~ U = u") = A~ 2oyl }dgdndﬂ
predictions based on the average model become more accu- (18)
rate if the relative-GVD parameter increases.

v |2

ar

oul? 1 o
_— + =V 2+_
a7 talvelty

IV. GENERAL STABILITY PROPERTIES OF THE L:f f f (i—d’|u(§, 772+ Z—lgh}(g, 7, r)|2)d§dndr,

SPINNING STS o
. : : . (19
In this section, we present a general analysis of the stabil-

ity properties of the STS’s in the present model. In order towhere ¢ and ¢ are the phases of the fieldsandv, respec-
do this, we first determine the stability properties of the spin-ively. A simple consideration of the Eq&.1) shows that, for
ning STS solutions of the average systéh); then we in-  stationary spinning STS solutions, the dynamical invariants
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FIG. 6. The HamiltoniarH of the s=0 solitons, vs the total
energyE, calculated for the effective wave-vector mismajgh0.
The solid and dashed curves correspond to stable and unstable soli-
®h solutions, respectively.

FIG. 5. The soliton’s propagation constanvs the total energy
E, calculated for the effective wave-vector mismatgk0. The
solid and dashed curves correspond to stable and unstable solit
solutions, respectively.

E, H, andL are related as follows: =sE and criterion indeed misses instability, if it is accounted for by
complex eigenvaludd 9,49). In addition, for small absolute
1| — values of they'® parameters, || <0.05, all the spinning
== _ 20112 _ 2 s y
H= 3[’8E“ KE+ 5J J f U(u” - 2v)dédrdr . solitons withs=1 are unstable, irrespective of the value of

(20) the relative-GVD parameter. Furthermore, Fig. 5 also
shows that, if6+ 0, for all the values obr, the total energy
Equations(14) show that, for fixed system parametgts of both stable solitons witls=0 and unstable ones with
8, and o, which are defined by the experimental conditions,=1 has an upper bound, whose value increases &iten-
the spinning solitons with a given spia form a one- erally, we observe that the parameter domain of stable soli-
parameter family of solutions. In addition, it is evident from tons is larger in the case &> 0, which corresponds to the
Egs. (14) that, to provide for the existence of spinning- self-focusing SPM and self-defocusing XPM terms in the
soliton solutions, the soliton’s propagation constantust  inducedy'® nonlinearity.
obey the condition«= k. ,=max{0,—B/2}. The conclusions derived from the dependereex(E) are
We have numerically computed both the nonspinning andlso supported by the diagraR=H(E), which is shown in
spinning soliton solutions of the systeth4), for the zero Fig. 6. The results displayed in this figure are in complete
effective wave-vector mismatch paramet8=0) and for the  agreement with those derived from tkéE) dependence. In
relative-GVD parameters=0, =1, ando=2; the results particular, if 6# 0, theH(E) diagram has two branches. This
are summarized in Fig. 5, which shows the dependence of fact can also be derived from the analytical dependence of
on the total energ¥. In this figure, solid curves correspond the HamiltoniarH on the energy, given by Eq.(20), which
to stable solutions, as discussed below, whereas the dashsdggests that, fo8<0, there are two values ¢ that cor-
ones represent unstable solutions. Figure 5 illustrates sevenaspond to the same total energyOnly the solitons on the
important properties of the STS solutions. First, the nonspintower branch are stable, as they correspond to a lower value
ning solitons(s=0) are stable in those parameter regionsof the Hamiltonian. Indeed, upon propagation, a soliton that
where the conditiomlE/d« >0 holds, which is precisely the corresponds to the upper brangarger Hamiltonian for the
stability region predicted by the Vakhitov-KolokoldWK) same number of photohsught to either completely decay
criterion [48], which is a condition for the stability of a into radiation or transform itself into a soliton belonging to
single-parameter family of solitons against perturbationghe lower branch, shedding off some radiation. Direct simu-
with real eigenvaluegfor this reason, in some cases the VK lations confirm this assumption.
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V. LINEAR STABILITY ANALYSIS OF SPINNING STS’s 40 s / 30 o
Although the VK stability criterion offers a partial insight sp K 7
into the stability properties of the spinning STS solutions of 2 =z O
Eq. (11), a full understanding of the stability of these states € £ 7,
may only be provided by the linear stability analysis of the 10 /4 ' 10 \
system(11), performed for small perturbations around sta- g =
tionary soliton solutions, in combination with direct simula- % 5 w0 % 5 10
wave number k wave number k

tions of the full dynamical equations. In this section, we

present results of the linear stability analysis for the STS's as FIG. 7. The stability eigenvalues; of the small perturbations
solutions to the average equatio(isl). These results will  around the spinning solitons with the effective phase mismatch
also be compared to direct simulations of the STS solutiong=0 and relative-GVD parameter=1, found for several values

in the full model of the QPM grating. of the azimuthal inde). The curves correspond to the following
To begin with, we look for the growth ratk; of linear  parameters:s=0, j=0, and 6=0.05(dashed lines s=1 and &
perturbation modes around the stationary solutibiis,7)  =0.05(solid lineg, ands=1, j=2, and§=-0.05(dot-lines.

and V(r,7), within the framework of Egs(11) linearized
around these solutions. The perturbed solutions are defin
as follows:

ed We have numerically found the eigenvalugsand the
corresponding eigenmodes of the systé®) by using a
numerical method as in Reff50], which is based on direct
U(E, 7,8, 7) = U(r, e rerst) = f(r | 7)ghiHled+ (st el integration of these equations by means of the Crank-
Nicolson scheme. The results are summarized in Fig. 7. This
figure shows that, for the range of values of the nonlinearity
(219  Pparameter 6 investigated here—namely,|5| <0.05—
spinning solitons withs=1 are unstable for alk. For s=0,
i(kE+s6) — N CH 20 l+(25H) 6 the corresponding solitons are stable in the region sf«0
0(,7,8,7) = V(r, eA =) = p(r, ehieizarE=mol < k,p=1.93. Note that, fos=1, all spinning solitons mani-
+q'(r, T)e{x}§+i[2;<§+(23—1)6]}’ fest anoscillatory instability (Im\; # 0) [25,51-54, whereas
(21b) for s=0 andx> k, the unstable eigenvalues are real. These
conclusions, concerning the soliton stability, fully agree with
where =0 is an arbitrary integer azimuthal index of the those suggested by Fig(l, as described above. .
perturbation); are eigenvalueéin the general case, they are ~ We have checked the validity of these predictions by di-
comple®, and the functionsf(r,7), g(r,7”, p(r,7, and rectnumerical simulations of both the average equatibbs

q(r,7 represent the perturbation eigenmodes. These fun@nd the full dynamical equation®). To numerically inte-
tions must obey the linear equations grate the systemgll) and(3), we used the Picard iteration

method[47], and the resulting linear system of equations

+g(r, T)e{“}§+i[K§+(s—j)9]}’

_ 1| #f 1af  (s+))2Pf  &#f 5 was solved by means of the Gauss-Seidel iterative scheme.
INfHS| S+ m T st | ki a2u The dynamical equati discretized t
ol a2 v ar 2 a2 972 e dynamical equations were discretized on a transverse
) 5 grid with 141X 141X 141 points, and a typical evolution
= VI)f+(U-6UV)p-asUvg+ (V+oU%)g=0, step wasA£=2.8x 1073, Generally, six Picard iterations and
(229 six Gauss-Seidel iterations were sufficient to achieve a good
convergence.
N2 2 The main conclusion of our numerical simulations is that,
-iNg+ l[az—% +199_ wﬂ—g + @} - kg + 8(2U2 for moderate values of the effectivg® parameter|d]
2L or® ror 2 oar? 97 <0.05, stable solitons of the average equati¢h® are

-V3)g+ (U - 8UV)g- sUVp+ (V+8U?f=0, (22h  stable too upon propagation in the full QPM mod@l and,
simultaneously, the unstable solitons of the average equa-
> . > tions are also unstable in the full model. This means that the
inp+ }{‘9_2’ + ldp _ (2521) ﬁ; + Ua p} - (2K+E)p average system(11), combined with the linear stability
4L ore ror re or 97 analysis of its STS solutions, provides for a good framework
- 258U%p + 2(U - SUV)f - 26UVg=0, (22¢  to predict the behavior of the solitons upon propagation in
the QPM grating.
5 2 o In order to illustrate these results, in Fig. 8 we present the
—ing+ }[‘9_‘3 199 _ (25‘21) 0_2 N U@} —(2x+B)q  isosurfaces of the FF and SH fields for a soliton witho,
4l or® ror re or a7 o=1,6=0.05,5=0, and«=0.5, taken at the input facet of the
- 26U2q+ 2(U - 8UV)g - 26UV = 0. (22d) QPM grating, =0, and after they have passed 30 grating
periods. The soliton parameters were chosen so that they
Physical solutions of this system must decay exponentially atorrespond to a stable soliton solution of the syst@d).
r —o. Also, since the perturbation modes must be boundedhis figure clearly shows stable propagation of the pulses,
at the origin,f andg must vanish as®ll andp andg must their final shape being undistorted as compared to the profile
vanish ag2ll, for r —0. of the input pulses. Note that upon propagation the shape of
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@ ®) VI. CONCLUSION
5 5
e 0 e e 0 e In this work, we have analyzed th@+1)-dimensional
1‘3 1‘3 spatiotemporal solitons, both nonspinnitg=0) and spin-
0 s 0 o 5 0 ning (s#0) ones, which propagate in bulk QPM gratings.
T 010 ¢ M0 -0 ¢ We have considered both the case in which the grating has

uniform linear optical properties—i.e., only the quadratic

" susceptibility changes along the propagation direction—and

0 0 the more general case when, in addition to the optical non-
10 8 © "0 8 C linearity, the linear optical coefficients, such as the refractive
20 2 2 20 index and chromatic dispersion, weakly vary along the grat-
q° 20 20 % n° 20 20 % ing. Employing perturbation theory, we have demonstrated

that the main characteristics of the STS dynamics in the
FIG. 9. (Color onling The same as in the previous figure, but in QPM gratings ale capture_d by an average model, which cor-
the case of an unstable spinning soliton, with0, =1, 5=0.05, ~ '€Sponds to a uniform optical medium that features both qua-
s=1, andx=0.1. The soliton suffers fragmentation, even though itdratic and effectivéinduced cubic nonlinearities. The latter
was simulated us|ng the S|mp||f|édverage§jequa“onill) In the |S nelthel’ Self fOCUSIng nor Self defOCUSIng, but IS I’ather Of a
framework of the full system, the instability is still strongerot ~ Mixed kind, featuring opposite signs in front of the SPM and
shown herg XPM terms. Although the induceq® nonlinearities are
small as compared to the intrinsi¢? nonlinearity, they are
large enough to strongly affect the dynamics of the STSs.
the pulses undergoes an oscillatory motiee Fig. 3, We have also investigated the stability of the solitons in
which explains why the isosurfaces that correspond to thgetail. In particular, we have found thal the spinning soli-
initial and final pulses shown in Fig. 8 have different sizes. tons, with the spirs= 1, areunstable(at least, for values of
On the other hand, if unstable spinning solitons are conthe parameters that correspond to experimentally available
sidered, the behavior Changes dramatlca”y This fact is |”USCond|t|on3 whereasstablezero- Sp|n solitons exist in a cer-
trated in Fig. 9, which presents isosurface plots of the FF anghin domain of the parameter space. In addition, our analysis
SH fields of an unstable spinning soliton with parametershas revealed that, if the SPM part of the mduqé"ﬂ nonlin-
B=0, =1, 5=0.05,5=1, andx=0.1, calculated a{=0 and earity is self-focusing, the size of this stability domain in-
after a propagation distance ¢£30 grating periods. Note creases. We have verified the predictions for the solitons’
that, in this case, the soliton dynamics is simulated using thetability, based on the linear perturbation analysis, by direct
average systertil). Even within the framework of this sim-  simulations of the soliton propagation in the full model of
plified description, the propagation is clearly unstable, as thgne QPM grating, as well as by numerical integration of the
initial spinning soliton breaks in three fragments, which mayaverage dynamical equations. Good agreement between the
be identified as zero-spin solitons. The splinters rotateyifferent approaches was observed.
around the longitudinal axis, so that total angular momentum As a final comment, we stress that the results presented
is conserved. When the evolution of same Splnnlng soliton |$]ere are no |Onge|’ valid if the two media form|ng the QPM
simulated using the equations of the full QPM mod#le  grating have widely different optical properties. In particular,
results are not shown heret decays over a much shorter if the relative difference between the chromatic dispersion of
propagation distance, which suggests that the true instabilitihe two media is large, the averaging procedure presented
is even stronger than predicted by the average equations. here no longer holds. In that case, one has to follow a differ-
ent approach, using variational methods and/or direct simu-
lations. Similar methods have been successfully used to de-

scribe the formation of localized optical pulses in Kerr
layered medid55,56 or the existence of STSs in “tandem”
structures, where the nonlinearity and GVD dispersion are
concentrated in alternating slafs7].
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