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We present a comprehensive analysis of the dynamics of three-dimensional spatiotemporal nonspinning and
spinning solitons in quasi-phased-matchedsQPMd gratings. By employing an averaging approach based on
perturbation theory, we show that the soliton’s stability is strongly affected by the QPM-induced third-order
nonlinearityswhich is always of a mixed type, with opposite signs in front of the corresponding self-phase and
cross-phase modulation termsd. We study the dependence of the stability of the spatiotemporal solitonsSTSd on
its energy, spin, the wave-vector mismatch between the fundamental and second harmonics, and the relative
strength of the intrinsic quadratic and QPM-induced cubic nonlinearities. In particular, all the spinning solitons
are unstable against fragmentation, while zero-spin STS’s have their stability regions on the system’s parameter
space.
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I. INTRODUCTION

Solitons are localized excitations that are not distorted
upon propagation in a nonlinear medium. They can be found
in many fields, such as optics, fluids, plasmas, condensed
matter, and field-theory physics. Ever since their discovery,
both fundamental physical properties and potential techno-
logical applications of the solitons have been attracting a
steadily growing interest. In optical media, solitons form ei-
ther through a balance between dispersive and self-phase-
modulationsSPMd effects, as is the case of temporal solitons,
or, in the spatial domain, as a result of the balance of diffrac-
tion and nonlinear self-focusingsfor a historical perspective
on optical solitons see Ref.f1gd.

A paradigmatic example is provided by the optical soli-
tons in silica fibersf2,3g, in which case the transverse local-
ization of the pulse is imposed by the fiber itself, whereas the
longitudinal and temporal localizations are achieved by the
perfect balance between the anomalous group-velocity dis-
persion sGVDd and SPM due to the Kerr effect in silica.
Extending these ideas to the propagation in bulkfi.e., three-
dimensionals3Dd mediag nonlinear dispersive media, one ar-
rives at the concept of an optical spatiotemporal soliton
sSTSd f4,5g salias “light bullets”f6gd. However, a fundamen-
tal problem is that formal 3D solitons in uniform Kerrsxs3dd

media are strongly unstable, being subject to catastrophic
wave collapsef7g. These theoretical challenges, as well as
the fact that STS’s could be used for potential applications in
ultrafast all-optical logic devicesf8g, provided that they are
formed at moderately low optical powers, have been a strong
incentive for both theoretical considerations and experimen-
tal efforts.

Several approaches to stabilize the STS have been pro-
posed. For example, one can employ media with a different
nonlinear optical response: namely, saturable nonlinearity
f9–11g, self-induced transparencyf12g, cubic-quintic nonlin-
earity f13–15g, or off-resonance two-level systemsf16g. Al-
ternatively, graded-index Kerr media can be usedf17g.

A different approach to generate stable STS’s is to employ
more than one propagating field, so that a 3D soliton would
be formed through mutual dynamic trapping of the waves
with different frequencies. The first example is the prediction
of stable light bullets in quadratically nonlinear media
f18–22g, which is possible because the quadraticsxs2dd non-
linearity does not lead to wave collapse in any physical di-
mensionf4,23,24g. Also, stable9bullets9 can be predicted in a
more general case of an optical medium with competingxs2d

and self-defocusingxs3d nonlinearities, which is sometimes
referred to as thexs2d :x−

s3d modelf25g. In fact, optical STS’s
have been thus far observed experimentally solely in such a
mediumf26g. These experiments employed highly elliptical
beams, such that diffraction effects were negligible in one
transverse dimension; consequently, the observed STS’s
were s2+1dD light bullets seffectively, with two spatial and
one temporal dimensionsd.
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Vortex sspinningd solitons constitute a distinct class of
STS’s, in which the optical field carries angular momentum
f15,25,27–31g. The vortex solitons have become the focus of
rapidly growing interest, both because they offer ideal test
objects to study fundamental properties of complex nonlinear
excitations and due to promising possibilities for applica-
tions, such as trapping and channeling of matter waves, cap-
turing and transport of microparticles, reconfigurable con-
duits for transmission of optical signals, and others.
However, the stability is a more difficult issue for the spin-
ning STS’s, as compared to their zero-spin counterparts,
chiefly because they are prone to strong instability against
azimuthal perturbations. The first stable spinning STS’s in
s3+1dD dimensions have been predicted in the cubic-quintic
f15g andxs2d :x−

s3d f25g models. In both cases, stabilization is
provided by the presence ofcompetingsself-focusing and
self-defocusingd nonlinearities.

Recently, it has been demonstrated both theoreticallyf32g
and experimentallyf33g that cascading of two-wave para-
metric frequency conversion inxs2d media may give rise an
effective xs3d self-focusing orself-defocusingnonlinearity.
Furthermore, by using the quasi-phase-matchingsQPMd
technique—i.e., compensation of the wave-vector mismatch
through an additional wave vector induced by periodic rever-
sal of the orientation of ferroelectric domains in the optical
crystal— the highestxs2d coefficient may be used, making
the two-wave parametric interaction most efficient. The
QPM technique offers several other advantages: it eliminates
spatial walk-off effects, nonbirefringent materials may be
used, and the phase matching is achievable at room tempera-
ture.

For these reasons, QPM gratings may potentially be ideal
media for both experimental and theoretical investigation of
the multidimensional solitons. In particular, QPM-supported
spatial solitons have been observed at intensities almost an
order of magnitude lower than those required to generate
them in bulk crystalsf34g. Theoretical results for 1D
f32,35–38g, and 2Df39g QPM spatial solitons, in type-I sys-
tems, which employ two interacting wavessfundamental and
second harmonicsd, polarized along the same direction, have
also been reported. Recently, extensions to type-II systems,
in which the parametric frequency conversion involves three
waves, as the fundamental-frequencysFFd harmonic is a
combination of two components with orthogonal polariza-

tions, while the second-harmonicsSHd wave has a single
polarization, have been reported for the 1Df40g and 2Df41g
cases. These studies have shown,inter alia, that QPM in-
duces an artificial cubic nonlinearity that may be self-
defocusing, competing with thexs2d one, which is the neces-
sary ingredient for generating stable spinning STS’s.
Furthermore, the inducedxs3d nonlinearity can be further en-
hancedf37,42g by modulating the QPM grating; a switching
scheme based on this effect has been proposed in Ref.f43g.

In this paper, we present a theoretical investigation of the
formation of spinning STS’s, and their stability, in a bulk
QPM grating. The paper is organized as follows. In the next
section, we introduce the mathematical model that describes
the interaction of copropagating waves in the type-I system.
Then, in Sec. III we introduce the spinning STS’s that can
propagate in such a grating. A general discussion of the sta-
bility of the STS’s is presented in Sec. IV, and a rigorous
linear perturbation analysis of the stability is the subject of
Sec. V. In the last section we summarize our results.

II. MATHEMATICAL MODEL

We consider the propagation of an optical pulse at fre-
quencyv and its SH, at frequency 2v, in a lossless bulk
QPM grating, under type-I second-harmonic generation
sSHGd conditions. The QPM grating is a periodic structure,
in which both the linear part of the susceptibility—i.e., the
refractive index—and the quadratic susceptibilityxs2d are pe-
riodic functions of the longitudinal distance, as is illustrated
in Fig. 1.

In this geometry, both the FF wave and the SH are polar-
ized along the same direction, which is also a principal crys-
tal axis; therefore, no walk-off effects are present. To de-
scribe a more general case, we allow for the average
snormalizedd quadratic susceptibility coefficientg0 to be
nonzero, a situation that describes QPM gratings fabricated
from semiconductor materials. Further, we assume that the
relative index contrast of the grating is small.

The two interacting fields copropagate along thez direc-
tion and can be represented as

Evisr,td = 1
2êEisx,y,z,tdexpfisvit − kizdg + c.c . , s1d

where ê is a unit vector along the polarization direction,x
and y are the transverse coordinates,z is the longitudinal

FIG. 1. Schematic of the SHG, in the QPM grating, under type-I conditions: two optical pulsed signals, with the electric fieldsEv and
E2v, polarized along the extraordinary axis, interact as they propagate in a grating with periodic variation of the quadratic susceptibilityxs2d.
The arrows indicate the orientation of ferroelectric domains.
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distance,t is time, andvn;nvsn=1,2d, Ei and ki =ksvid
being the electric fields and wave vectors at the two harmon-
ics, respectively. Then, within the slowly varying envelope
approximation, the two copropagating fields obey the known
equationsf44g,

2ik1S ]E1

]z
+ k18

]E1

]t
D + ¹'

2 E1 − k1k19
]2E1

]t2
+

2v1
2n1

c2 Dn1szdE1

+
2v1

2

c2 xs2dszdE1
*E2e

−iDkz= 0, s2ad

2ik2S ]E2

]z
+ k28

]E2

]t
D + ¹'

2 E2 − k2k29
]2E2

]t2
+

2v2
2n2

c2 Dn2szdE2

+
v2

2

c2 xs2dszdE1
2eiDkz= 0, s2bd

where ¹'
2 is the transverse Laplacian,Dk=2k1−k2 is the

wave-vector mismatch,kn8=s]k/]vduv=vn
=1/vgn is the in-

verse of the group velocity,kn9=s]2k/]v2duv=vn
is the GVD

coefficient, andxs2dszd is the z-dependent quadratic coeffi-
cient; n1, n2, andDn1szd, Dn2szd are, respectively, the aver-
age and the variable partsmodulationd of the two refractive
indices at the FF and SH. In order to normalize these equa-
tions, we definez=z/z0, j=x/w0,h=y/w0, t= t / t0, F=A1E1,
and C=A2E2. Here,z0=k1w0

2 is the diffraction length at the
FF, w0 is the characteristic transverse spatial width of the
pulse,t0=Îz0uk19u is the characteristic pulse duration, andAi

=Îe0cni /2S0 are normalization constants for the field ampli-
tudes, withc being the speed of light,e0 the vacuum permit-
tivity, andS0=1GW/cm2 a normalization intensity. Upon the
normalization, Eqs.s2d become

iS ]F

]z
+ q1

]F

]t
D +

1

2
F¹'

2 F − sgnsk19d
]2F

]t2 G + aFszdF

+ GszdF*Ce−ibz = 0, s3ad

iS ]C

]z
+ q2

]C

]t
D +

1

4
F¹'

2 C − sgnsk29ds
]2C

]t2 G + 2aCszdC

+ GszdF2eibz = 0, s3bd

where qi =z0/vgit0, b=z0Dk is the normalized wave-vector
mismatch,aF,Cszd=vDn1,2szdz0/c are the normalized modu-
lations of the refractive indicesffor a grating with uniform
linear properties, aF,Cszd;0 and g0=0g, Gszd
=svxs2dz0/cdÎ2S0/e0cn1

2n2 is the normalized parametric cou-
pling strength, ands=2uk29 u / uk19u. In deriving the systems3d,
we assumed that 2k2<k1, which is a good approximation for
usual experimental conditions. Furthermore, we assume that
the GVD at FF is anomalous in both media that form the
QPM structure—i.e., sgnsk19d=−1—in which case STS’s ex-
ist, in the rigorous sense, only if the dispersion at SH is also
anomalous or vanishesf19g showever, in some cases, STS’s
may “almost exist” even when the GVD is slightly normal at
SH, which means that the soliton exists with a tiny, virtually
invisible tail attached to itf45gd. Therefore, we set sgnsk29d
=−1 andsù0. Thus, the two optical media that form the

grating must have similar dispersion properties; therefore,
the relative-GVD parameters is assumed constant along the
grating.

The latter condition is rigorously satisfied by gratings ob-
tained through the periodically poling of such ferroelectric
materials as LiNbO3 or KTiOPO4 sKTPd. Finally, it is as-
sumed that the group velocities at the two harmonics are the
same,vg1=vg2;vsq1=q2d, which means that there is no
temporal walk-off between the two pulses. As a result, the
first-order time derivatives in the systems3d can be elimi-
nated by a simple transformationt→t−z /v.

The dynamics of the pulses is determined by the interplay
of three characteristic lengths: the diffraction lengthz0, the
coherence lengthLc=p / uDku, and the domain length of the
grating,L. In the normalized units,z0=1 andLc=p / ubu. In
typical experiments, the diffraction length isz0,1 mm,
whereas the domain length isL,10 mm. Therefore, the ap-
proximation L!1 holds, or, in other words, the grating’s
wave vectoruV u =p /L is large,uV u @1. Furthermore, since
the domain length is much larger than the wavelengths em-
ployed and the relative refractive index contrast between ad-
jacent slabs in the grating is small, Bragg reflections may be
neglected. Under these conditions, the dynamics of the beam
interaction can be described by a set of averaged equations
f32g. To derive them, we follow the method introduced in
Ref. f32g ssee also Refs.f39,41g for the case of 2D spatial
solitonsd, Fourier-decomposing the grating parameters
aF,Cszd andGszd,

aF,Cszd = aF,Co
n

gne
inVz, s4d

Gszd = g0 + go
n

gne
inVz, s5d

and the fieldsFsj ,h ,z ,td andCsj ,h ,z ,td,

Fsj,h,z,td = o
n

Fnsj,h,z,tdeinVz, s6ad

Csj,h,z,td = o
n

Cnsj,h,z,tdeisnV+bdz, s6bd

where g0 and g are, respectively, the average value and
modulation amplitude of the parametric-coupling strength,
aF,C are the amplitudes of the modulation of the refractive
index, Fnsj ,h ,z ,td and Cnsj ,h ,z ,td are slowly varying
functions of their arguments, as compared toeiVz, and b
=b−V is the effective wave-vector mismatch parameter. We
assume that the phase mismatch introduced by the grating
can be accurately controlled; hence,b is very small sal-
though bothb and uVu are larged. For the grating in Fig. 1,
the Fourier coefficientsgn=2sgnsVd / ipn for odd n and gn

=0 otherwise. Here, the sgnsVd factor ensures that both posi-
tive and negative values ofV correspond to the same grating.
Consequently, since sgnsbd=sgnsVd, we can treat both cases
b+0 simultaneously. Furthermore, we assume that the
higher-order harmonics in the expansionss6d are of order
Os1/uV u d or smaller, whereas the zero-order ones are of or-
der Os1d. Then, following the procedure introduced in Ref.
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f32g, we derive relationships between the higher-order Fou-
rier coefficients and the zero-order onesswhich are called
average fieldsin this paperd, F0 andC0:

FnÞ0 =
1

nV
faFgnF0 + sg0dn,−1 + ggn+1dF0

*C0g, s7ad

CnÞ0 =
1

nV
f2aCgnC0 + sg0dn,1 + ggn−1dF0

2g. s7bd

Further, by inserting these expressions in the systems3d
and neglecting higher-order terms in the corresponding sys-
tem that describes the evolution of the zero-order fields, we
obtain the following system of equations that governs the
dynamics of the zero-ordersaveraged fields in the expansion
s6d:

i
]F0

]z
+

1

2
S¹'

2 F0 +
]2F0

]t2 D + rF0
*C0 + DsuF0u2 − uC0u2dF0

= 0, s8ad

i
]C0

]z
+

1

4
S¹'

2 C0 + s
]2C0

]t2 D − bC0 + r*C0
2 − 2DuF0u2C0 = 0,

s8bd

where the effective quadratic and induced cubic nonlineari-
ties are represented by the parameters

r =
2isgnsVd

p
f2g0saF − aCd/V − gg, s9d

D = fg0
2 + g2s1 − 8/p2dg/V. s10d

Finally, by introducing the rescaled fieldsu= ur uF0 and v
=rC0, the systems8d becomes

i
]u

]z
+

1

2
S¹'

2 u +
]2u

]t2D + u*v + dsuuu2 − uvu2du = 0,

s11ad

i
]v
]z

+
1

4
S¹'

2 v + s
]2v
]t2D − bv + u2 − 2duuu2v = 0,

s11bd

whered=D / uru2 is the relative strength of the induced cubic
nonlinearity and the intrinsic quadratic one. For typical QPM
gratings, the latter parameter takes valuesud u &0.05, but as
we will show later, even such small values can have a dra-
matic influence on the formation of STS’s.

We stress that, unlike the full propagation systems8d, the
systems11d has constant coefficients, which greatly simpli-
fies the analysis of existence and stability of its spinning STS
solutions. It is also worthy to note that the form of the effec-
tive xs3d nonlinearity in Eqs.s11d is drastically different from
that in the model which assumes a material Kerr nonlinearity,
rather the artificial onef25g. In particular, the cubic nonlinear
terms in Eqs.s11d are neither definitely self-focusing nor
definitely self-defocusing, but are rather of a mixed kind.
Indeed, if, for instance,d is positive, the SPM term in the

first equation is self-focusing, but the cross-phase modula-
tion sXPMd terms in both equations are self-defocusing and
the second equation includes no SPM term.

III. SPINNING SOLITONS IN THE QPM MEDIUM

To investigate the formation of spinning STS’s in the bulk
QPM grating, we proceed as follows. First, we find the
spinning-soliton solutions of the average systems11d and
subsequently use them to construct the spinning solitons that
propagate in the actual QPM grating. For the latter step, we
used the following relationships between the average fields
hu,vj and the actual oneshF ,Cj, which are valid to first
order ine=1/uVu:

Fsz = 0d =
usz = 0d

uru
−

1

uVuF ipaF

2
+ S2ig

p
+ g0sgnsVdD

3
v*sz = 0d

r
Gusz = 0d

uru
+ OS 1

uVu2D , s12ad

Csz = 0d =
vsz = 0d

r
−

1

uVuFipaC

vsz = 0d
r

+ S2ig

p
− g0sgnsVdDu2sz = 0d

uru2 G + OS 1

uVu2D .

s12bd

To derive these transformations one should insert the fields
given by Eqs.s7d in the expansions6d and collect all the
terms up to the orderOs1/uVu2d.

To determine stationary spinning STS solutions of the
systems11d we look for solutions that can be written as

usj,h,z,td = Usr,tdeikz+isu, s13ad

vsj,h,z,td = Vsr,tde2ikz+2isu, s13bd

where U and V are assumed to be real functions,r
=Îj2+h2 and u are the polar coordinates in the transverse
plane, k is the soliton’s propagation constant, ands is its
vorticity s“spin”d. Note that, althoughUsr ,td andVsr ,td de-
scribe stationary STS’s, they satisfy a system of partial dif-
ferential equations

1

2
S ]2U

]r2 +
1

r

]U

]r
−

s2

r2

]2U

]r2 +
]2U

]t2 D − kU + UV

+ dsU2 − V2dU = 0, s14ad

1

4
S ]2V

]r2 +
1

r

]V

]r
−

4s2

r2

]2V

]r2 + s
]2V

]t2D − sb + 2kdV + U2

− 2dU2V = 0. s14bd

Equationss14d have been solved numerically by using a
standard band-matrix algorithmf46g, for different values of
the effective wave-vector mismatchb, soliton’s propagation
constantk, and relative-GVD parameters. Furthermore, to
verify whether these spinning solitons preserve their shape
upon propagation in the actual QPM grating, we used the
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transformations12d to restore the grating fieldshF ,Cj on the
basis of the average ones, found by numerically solving Eqs.
s14d, and subsequently used these grating fields as initial
conditions for the full propagation systems3d. The latter sys-
tem has been integrated by using a standard Crank-Nicolson
method, with transparent boundary conditionsf47g . For the
parameters of the grating, we tookaF=aC=0, g0=0, g=1,
and V=9.35—i.e., a grating for which only the nonlinear
susceptibility varies with the longitudinal distancez. The
corresponding value of the inducedxs3d coefficient is ud u
=0.05.

One example that illustrates this procedure is presented in
Fig. 2, which shows the FF and SH fields, in the cross sec-
tion of t=0, both at the input facet of the QPM gratingsz
=0d and after the propagation distancez=20.164s30 grating
periodsd. In this case, the fields correspond to a zero-spin
STS ss=0d with the relative-GVD parameters=1, propaga-
tion constantk=0.5, and zero phase mismatchb=0. Also
shown in Fig. 2 are the phases of the two pulses at the output
facet of the grating. This figure demonstrates that the soliton
remainsstableupon propagation, although its amplitude pro-
file is slightly reshaped and the phases at both the FF and SH
are weakly modulated.

To gain a deeper insight into the process of the STS for-
mation in the actual QPM grating, we show in Fig. 3 the
dependence of the total energy of the FF and SH components
of the pulse versus the propagation distance. The soliton
propagation is illustrated for three values of the dispersion
parameters, s=0, s=1, ands=2, and for both positive and

negative values of the relativexs3d strength parameter,d
=0.05 andd=−0.05, respectively. In all three cases presented
in Fig. 3, the solitons are characterized by parameter values
s=0, k=0.1, andb=0. The energy of the FF and SH com-
ponents, and the total energy are defined as follows:

EF =E E E uFsz;j,h,tdu2djdhdt, s15ad

EC =E E E uCsz;j,h,tdu2djdhdt, s15bd

Etot = EF + EC. s15cd

Among other things, Fig. 3 shows that, after a short tran-
sient distance over which the input pulse gets reshaped, it
attains a propagation regime in which, on average, the ener-
gies of its FF and SH components remain constant. Notice,
however, that in this regime of quasistationary propagation,
the soliton’s amplitudes exhibit strong oscillations, a phe-
nomenon that is a direct manifestation of the spatially peri-
odic grating. Indeed, the period of oscillations in Fig. 3 ex-
actly matches the periodicity of the grating.

The origin of the fast oscillations seen in Fig. 3 can be
clarified if one resorts to the perturbative approach. Follow-
ing the lines of the analysis developed in Refs.f32,39,41g,
one can derive relationships between the energies carried by
the fieldshF ,Cj and the rescaled average ones,hu,vj, valid
to the orderOs1/uVu2d:

EF =
Eu

uru2
+

2iK

Vuru2r
Fg0sin sVzd

−
4sgnsVd

p
onù1

coss2nVzd
4n2 − 1

G + OS 1

uVu2D ,

s16ad

FIG. 2. sColor onlined Field amplitude and phase profiles of the
FF sleft panelsd and SHsright panelsd waves, calculated in the cross
sectiont=0, and corresponding to a zero-spin STS with the disper-
sion parameters=1, soliton wave vectork=0.5, and zero wave-
vector mismatch,b=0. The field amplitude profiles are calculated
at z=0 fsad and sbdg and z=20.164 s30 grating periodsd fscd and
sddg, whereas the phase profilesfsed and sfdg are calculated atz
=20.164.

FIG. 3. The energy of the FFssolid linesd and SHsdashed linesd
components vs the longitudinal distancez for d=0.05 sleft panelsd
and d=−0.05 sright panelsd. The soliton parameters ares=0, k
=0.1, andb=0 and the relative-GVD parameters=0 supper pan-
elsd, s=1 smiddle panelsd, ands=2 slower panelsd.
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EC =
Ev

uru2
−

2iK

Vuru2r
Fg0sin sVzd

−
4sgnsVd

p
onù1

coss2nVzd
4n2 − 1

G + OS 1

uVu2D ,

s16bd

whereKszd=eeeu2vdjdhdt and the energiesEu,v are given
by expressions similar to Eqs.s15d. Note that these relations
hold only for real solutionshu,vj. When the average fields
hu,vj are stationary STS solutions of the systems11d, K is a
constant. Similar relations have been derived in Ref.f32g, for
the particular case of 1D gratings withg0=0. These equa-
tions show that fast modulations with spatial frequency 2V
are superimposed on top of constant values of the energies,
Eu,v / uru2. The origin of the modulations is the presence of
higher-order terms in the Fourier expansions6d. Note that, if
g0Þ0, the spatial frequency of the modulation of the ener-
gies is equal toV. Also, notice that, up to a scaling transfor-
mation, the energies are conserved at the zeroth and first
orders,EF+EC=sEu+Evd / uru2.

The induced third-order nonlinearity plays an important
role in the dynamics of the STS’s in the QPM. This conclu-
sion is supported by the results obtained in the following
numerical experiment. We found the solitons of the system
s14d that correspond tob=0, spins=0 andd=0, ±0.05 for
several values of the soliton propagation constantk and
relative-GVD parameters. Then, these solutions were used
as initial conditions for the full dynamical equationss3d,
which were then integrated numerically until the average en-
ergy of the pulses would have reached a constant value. We
then determined the ratio of the average peak intensities at
the two harmonics and compared the results with those that
correspond to the soliton solutions of the systems14d. The
results are presented in Fig. 4. As this figure illustrates, there
is a large discrepancy between the predictions of the system
s14d, in which the third-order nonlinearity is taken into ac-
countsdÞ0d, and those withd=0. As one can see, for small
values of the soliton’s propagation constantk, the former
agree well with the numerical simulations of the full system
s3d. Note that the same behavior has been observed in the 1D
model f32g. On the other hand, Fig. 4 also shows that, ask
increases, the predictions based on the average model be-
come less accurate. The source of this discrepancy can be
easily understood by noting that one of the conditions, under
which the average model was derived, is that the average
fields must vary slowly, as compared toeiVz. This amounts to
the requirement thatk must be much smaller than the grat-
ing’s wave vectorV. Importantly, Fig. 4 also shows that
predictions based on the average model become more accu-
rate if the relative-GVD parameters increases.

IV. GENERAL STABILITY PROPERTIES OF THE
SPINNING STS

In this section, we present a general analysis of the stabil-
ity properties of the STS’s in the present model. In order to
do this, we first determine the stability properties of the spin-
ning STS solutions of the average systems11d; then we in-

vestigate whether these stability characteristics are preserved
when the spinning STS’s propagate in the actual grating de-
scribed by the full dynamical systems3d. Note that the sta-
bility properties of the spinning STSs can also be investi-
gated by employing a Floquet analysis of the plane-wave
solutions of the full dynamical systems3d f36,38g.

To this end, we define conserved quantitiessintegrals of
motiond that are preserved by the dynamical equationss11d:
the total energyE, HamiltonianH, and angular momentum
L:

E =E E E fuusj,h,z,tdu2 + uvsj,h,z,tdu2gdjdhdt = Eu + Ev,

s17d

H =
1

2
E E E Fu¹'uu2 + U ]u

]t
U2

+
1

4
u¹'vu2 +

s

4
U ]v

]t
U2

+ sbuvu2 − u*2v − u2v*d − dsuuu2 − 2uvu2duuu2Gdjdhdt,

s18d

L =E E E S ]f

]u
uusj,h,tdu2 +

]c

]u
uvsj,h,tdu2Ddjdhdt,

s19d

wheref andc are the phases of the fieldsu andv, respec-
tively. A simple consideration of the Eqs.s11d shows that, for
stationary spinning STS solutions, the dynamical invariants

FIG. 4. Ratio between the peak intensities of the SH and FF
components,kuCu2l / kuFu2l, of the soliton solutions of Eqs.s14d,
calculated for d=−0.05sdashed linesd, d=0 ssolid linesd, and d
=0.05sdot-dashed linesd, vs soliton’s propagation constantk. The
same ratio, which corresponds to the grating withd=−0.05s3d and
d=0.05s+d, is shown as found by numerical integration of the full
system 3 and averaging over ten diffraction lengthsssee text for
detailsd. The parameters ares=0 szero spind and b=0 sno wave-
vector mismatchd.
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E, H, andL are related as follows:L=sE and

H =
1

3
FbEu − kE + dE E E u2su2 − 2v2ddjdhdtG .

s20d

Equationss14d show that, for fixed system parametersb,
d, ands, which are defined by the experimental conditions,
the spinning solitons with a given spins form a one-
parameter family of solutions. In addition, it is evident from
Eqs. s14d that, to provide for the existence of spinning-
soliton solutions, the soliton’s propagation constantk must
obey the conditionkùkcutoff=maxh0,−b /2j.

We have numerically computed both the nonspinning and
spinning soliton solutions of the systems14d, for the zero
effective wave-vector mismatch parametersb=0d and for the
relative-GVD parameterss=0, s=1, ands=2; the results
are summarized in Fig. 5, which shows the dependence ofk
on the total energyE. In this figure, solid curves correspond
to stable solutions, as discussed below, whereas the dashed
ones represent unstable solutions. Figure 5 illustrates several
important properties of the STS solutions. First, the nonspin-
ning solitonsss=0d are stable in those parameter regions
where the conditiondE/dk.0 holds, which is precisely the
stability region predicted by the Vakhitov-KolokolovsVK d
criterion f48g, which is a condition for the stability of a
single-parameter family of solitons against perturbations
with real eigenvaluessfor this reason, in some cases the VK

criterion indeed misses instability, if it is accounted for by
complex eigenvaluesf19,49gd. In addition, for small absolute
values of thexs3d parameterd, ud u ø0.05, all the spinning
solitons withs=1 are unstable, irrespective of the value of
the relative-GVD parameters. Furthermore, Fig. 5 also
shows that, ifdÞ0, for all the values ofs, the total energy
of both stable solitons withs=0 and unstable ones withs
=1 has an upper bound, whose value increases withd. Gen-
erally, we observe that the parameter domain of stable soli-
tons is larger in the case ofd.0, which corresponds to the
self-focusing SPM and self-defocusing XPM terms in the
inducedxs3d nonlinearity.

The conclusions derived from the dependencek=ksEd are
also supported by the diagramH=HsEd, which is shown in
Fig. 6. The results displayed in this figure are in complete
agreement with those derived from theksEd dependence. In
particular, ifdÞ0, theHsEd diagram has two branches. This
fact can also be derived from the analytical dependence of
the HamiltonianH on the energyE, given by Eq.s20d, which
suggests that, forbø0, there are two values ofH that cor-
respond to the same total energyE. Only the solitons on the
lower branch are stable, as they correspond to a lower value
of the Hamiltonian. Indeed, upon propagation, a soliton that
corresponds to the upper branchslarger Hamiltonian for the
same number of photonsd ought to either completely decay
into radiation or transform itself into a soliton belonging to
the lower branch, shedding off some radiation. Direct simu-
lations confirm this assumption.

FIG. 5. The soliton’s propagation constantk vs the total energy
E, calculated for the effective wave-vector mismatchb=0. The
solid and dashed curves correspond to stable and unstable soliton
solutions, respectively.

FIG. 6. The HamiltonianH of the s=0 solitons, vs the total
energyE, calculated for the effective wave-vector mismatchb=0.
The solid and dashed curves correspond to stable and unstable soli-
ton solutions, respectively.
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V. LINEAR STABILITY ANALYSIS OF SPINNING STS’s

Although the VK stability criterion offers a partial insight
into the stability properties of the spinning STS solutions of
Eq. s11d, a full understanding of the stability of these states
may only be provided by the linear stability analysis of the
systems11d, performed for small perturbations around sta-
tionary soliton solutions, in combination with direct simula-
tions of the full dynamical equations. In this section, we
present results of the linear stability analysis for the STS’s as
solutions to the average equationss11d. These results will
also be compared to direct simulations of the STS solutions
in the full model of the QPM grating.

To begin with, we look for the growth ratel j of linear
perturbation modes around the stationary solutionsUsr ,td
and Vsr ,td, within the framework of Eqs.s11d linearized
around these solutions. The perturbed solutions are defined
as follows:

usj,h,z,td − Usr,tdeiskz+sud = fsr,tdehl jz+ifkz+ss+jdugj

+ g*sr,tdehl j
*z+ifkz+ss−jdugj,

s21ad

vsj,h,z,td − Vsr,tde2iskz+sud = psr,tdehl jz+if2kz+s2s+jdugj

+ q*sr,tdehl j
*z+if2kz+s2s−jdugj,

s21bd

where j ù0 is an arbitrary integer azimuthal index of the
perturbation,l j are eigenvaluessin the general case, they are
complexd, and the functionsfsr ,td, gsr ,td, psr ,td, and
qsr ,td represent the perturbation eigenmodes. These func-
tions must obey the linear equations

il j f +
1

2
F ]2f

]r2 +
1

r

] f

]r
−

ss+ jd2

r2

]2f

]r2 +
]2f

]t2G − kf + ds2U2

− V2df + sU − dUVdp − dUVq+ sV + dU2dg = 0,

s22ad

− il jg +
1

2
F ]2g

]r2 +
1

r

]g

]r
−

ss− jd2

r2

]2g

]r2 +
]2g

]t2G − kg + ds2U2

− V2dg + sU − dUVdq − dUVp+ sV + dU2df = 0, s22bd

il jp +
1

4
F ]2p

]r2 +
1

r

]p

]r
−

s2s+ jd2

r2

]2p

]r2 + s
]2p

]t2G − s2k + bdp

− 2dU2p + 2sU − dUVdf − 2dUVg= 0, s22cd

− il jq +
1

4
F ]2q

]r2 +
1

r

]q

]r
−

s2s− jd2

r2

]2q

]r2 + s
]2q

]t2G − s2k + bdq

− 2dU2q + 2sU − dUVdg − 2dUVf = 0. s22dd

Physical solutions of this system must decay exponentially at
r →`. Also, since the perturbation modes must be bounded
at the origin,f andg must vanish asr us± j u andp andq must
vanish asr u2s± j u, for r →0.

We have numerically found the eigenvaluesl j and the
corresponding eigenmodes of the systems22d by using a
numerical method as in Ref.f50g, which is based on direct
integration of these equations by means of the Crank-
Nicolson scheme. The results are summarized in Fig. 7. This
figure shows that, for the range of values of the nonlinearity
parameter d investigated here—namely,ud u ø0.05—
spinning solitons withs=1 are unstable for allk. For s=0,
the corresponding solitons are stable in the region of 0øk
økup=1.93. Note that, fors=1, all spinning solitons mani-
fest anoscillatory instability sIml j Þ0d f25,51–54g, whereas
for s=0 andk.kup, the unstable eigenvalues are real. These
conclusions, concerning the soliton stability, fully agree with
those suggested by Fig. 5sbd, as described above.

We have checked the validity of these predictions by di-
rect numerical simulations of both the average equationss11d
and the full dynamical equationss3d. To numerically inte-
grate the systemss11d and s3d, we used the Picard iteration
method f47g, and the resulting linear system of equations
was solved by means of the Gauss-Seidel iterative scheme.
The dynamical equations were discretized on a transverse
grid with 14131413141 points, and a typical evolution
step wasDz=2.8310−3. Generally, six Picard iterations and
six Gauss-Seidel iterations were sufficient to achieve a good
convergence.

The main conclusion of our numerical simulations is that,
for moderate values of the effectivexs3d parameterud u
ø0.05, stable solitons of the average equationss11d are
stable too upon propagation in the full QPM models3d and,
simultaneously, the unstable solitons of the average equa-
tions are also unstable in the full model. This means that the
average systems11d, combined with the linear stability
analysis of its STS solutions, provides for a good framework
to predict the behavior of the solitons upon propagation in
the QPM grating.

In order to illustrate these results, in Fig. 8 we present the
isosurfaces of the FF and SH fields for a soliton withb=0,
s=1, d=0.05,s=0, andk=0.5, taken at the input facet of the
QPM grating,z=0, and after they have passed 30 grating
periods. The soliton parameters were chosen so that they
correspond to a stable soliton solution of the systems11d.
This figure clearly shows stable propagation of the pulses,
their final shape being undistorted as compared to the profile
of the input pulses. Note that upon propagation the shape of

FIG. 7. The stability eigenvaluesl j of the small perturbations
around the spinning solitons with the effective phase mismatch
b=0 and relative-GVD parameters=1, found for several values
of the azimuthal indexj . The curves correspond to the following
parameters:s=0, j =0, and d=0.05sdashed linesd, s=1 and d
=0.05ssolid linesd, ands=1, j =2, andd=−0.05sdot-linesd.
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the pulses undergoes an oscillatory motionssee Fig. 3d,
which explains why the isosurfaces that correspond to the
initial and final pulses shown in Fig. 8 have different sizes.

On the other hand, if unstable spinning solitons are con-
sidered, the behavior changes dramatically. This fact is illus-
trated in Fig. 9, which presents isosurface plots of the FF and
SH fields of an unstable spinning soliton with parameters
b=0, s=1, d=0.05,s=1, andk=0.1, calculated atz=0 and
after a propagation distance ofz=30 grating periods. Note
that, in this case, the soliton dynamics is simulated using the
average systems11d. Even within the framework of this sim-
plified description, the propagation is clearly unstable, as the
initial spinning soliton breaks in three fragments, which may
be identified as zero-spin solitons. The splinters rotate
around the longitudinal axis, so that total angular momentum
is conserved. When the evolution of same spinning soliton is
simulated using the equations of the full QPM modelsthe
results are not shown hered, it decays over a much shorter
propagation distance, which suggests that the true instability
is even stronger than predicted by the average equations.

VI. CONCLUSION

In this work, we have analyzed thes3+1d-dimensional
spatiotemporal solitons, both nonspinningss=0d and spin-
ning ssÞ0d ones, which propagate in bulk QPM gratings.
We have considered both the case in which the grating has
uniform linear optical properties—i.e., only the quadratic
susceptibility changes along the propagation direction—and
the more general case when, in addition to the optical non-
linearity, the linear optical coefficients, such as the refractive
index and chromatic dispersion, weakly vary along the grat-
ing. Employing perturbation theory, we have demonstrated
that the main characteristics of the STS dynamics in the
QPM gratings are captured by an average model, which cor-
responds to a uniform optical medium that features both qua-
dratic and effectivesinducedd cubic nonlinearities. The latter
is neither self-focusing nor self-defocusing, but is rather of a
mixed kind, featuring opposite signs in front of the SPM and
XPM terms. Although the inducedxs3d nonlinearities are
small as compared to the intrinsicxs2d nonlinearity, they are
large enough to strongly affect the dynamics of the STSs.

We have also investigated the stability of the solitons in
detail. In particular, we have found thatall the spinning soli-
tons, with the spinsù1, areunstablesat least, for values of
the parameters that correspond to experimentally available
conditionsd, whereasstablezero-spin solitons exist in a cer-
tain domain of the parameter space. In addition, our analysis
has revealed that, if the SPM part of the inducedxs3d nonlin-
earity is self-focusing, the size of this stability domain in-
creases. We have verified the predictions for the solitons’
stability, based on the linear perturbation analysis, by direct
simulations of the soliton propagation in the full model of
the QPM grating, as well as by numerical integration of the
average dynamical equations. Good agreement between the
different approaches was observed.

As a final comment, we stress that the results presented
here are no longer valid if the two media forming the QPM
grating have widely different optical properties. In particular,
if the relative difference between the chromatic dispersion of
the two media is large, the averaging procedure presented
here no longer holds. In that case, one has to follow a differ-
ent approach, using variational methods and/or direct simu-
lations. Similar methods have been successfully used to de-
scribe the formation of localized optical pulses in Kerr
layered mediaf55,56g or the existence of STSs in “tandem”
structures, where the nonlinearity and GVD dispersion are
concentrated in alternating slabsf57g.
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FIG. 9. sColor onlined The same as in the previous figure, but in
the case of an unstable spinning soliton, withb=0, s=1, d=0.05,
s=1, andk=0.1. The soliton suffers fragmentation, even though it
was simulated using the simplifiedsaveragedd equationss11d. In the
framework of the full system, the instability is still strongersnot
shown hered.

FIG. 8. sColor onlined Isosurface plots of the FFsleft panelsd
and SHsright panelsd fields atz=0 fsad andsbdg and after the propa-
gation distance equal to 30 grating periodsfscd and sddg. The full
model, based on Eqs.s3d, was simulated here. The results illustrate
stable propagation of a soliton withb=0, s=1, d=0.05,s=0, and
k=0.5.
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